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Abstract

The paper deals with a numerical method for aerodynamic shape optimization. It is based on simultaneous pseudo-

timestepping in which stationary states are obtained by solving the non-stationary system of equations representing the

state, costate and design equations. The main advantages of this method are that it requires no additional globalization

techniques and that a preconditioner can be used for convergence acceleration which stems from the reduced SQP

method. A design example for drag reduction for an RAE2822 airfoil, keeping its thickness fixed, is included. The over-

all cost of computation is less than four times that of the forward simulation run.

� 2004 Elsevier Inc. All rights reserved.

Keywords: Shape optimization; Simultaneous pseudo-timestepping; Euler equations; Preconditioner; Reduced SQP methods; One-shot

method; Airfoil
1. Introduction

Applications of numerical optimization techniques in the field of aerodynamics are an active area of re-

search. With the advancement of computer technology and availability of fast solvers, the field of Compu-

tational Fluid Dynamics has made considerable progress. The FLOWer code [22,23] of the German

Aerospace Center (DLR) presents one such example which we use for the solution of the Euler and the
adjoint Euler equations. Despite many recent advances in the field of aerodynamic shape optimization,

much important research remains to be done. Several works in this field have been reported in last three

decades using different numerical techniques. Gradient methods are among the most commonly applied
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Nomenclature

ðx; yÞ 2 R2 Cartesian coordinates
(n,g) 2 [0,1]2 generalized coordinates

X flow field domain

oX = B [ C flow field boundary

B farfield boundary

C solid wall, airfoil

~n :¼ nx
ny

� �
unit outward normal

a angle of attack

q density
�q ¼ unx þ vny velocity

u x-component of velocity

v y-component of velocity

p pressure

E total energy

H total enthalpy
M Mach number

)1 values at free stream

c ratio of specific heats

Cref chord length

Cp pressure coefficient

CD drag coefficient

CL lift coefficient

Cm pitching moment coefficient
I cost unction

w vector of state variables

q vector of design variables

k vector of adjoint variables

J Jacobian
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methods in practical problems of this field. In this method, one of the main issues is the efficient compu-

tation of the sensitivity derivatives. Among various techniques reported for this purpose, the continuous

adjoint method has gained considerable attention since its derivation by Jameson in [15].

The focus of the present work is on optimal control problems, and in particular the sub-class of shape

design problems. Pioneering theoretical works on the methodology for solving such problems have been

presented in [25,28–30]. These problems can be written in abstract form as
min Iðw; qÞ
s:t: cðw; qÞ ¼ 0;

ð1Þ
where (w,q) 2 X · P (X,P are appropriate Hilbert spaces), I :X � P ! R and c:X · P ! Y are twice Frechet-

differentiable (with Y an appropriate Banach space). The Jacobian, J = (oc)/(ow), is assumed to be invert-

ible. Here, the equation c(w,q) = 0 represents the steady-state flow equations (in our case Euler equations)

together with boundary conditions, w is the vector of dependent variables and q is the vector of design var-
iables. The objective I(w,q) is the drag of an airfoil for the purposes of this paper. Typically, there arise

inequality constraints of the form
hðw; qÞ P 0;
which in practical applications, often pose severe restrictions on the validity region of the model or for the

design construction. In the present work we are outlining a framework for unconstrained optimization, and

the addition of constraints is addressed in the subsequent work [12].
The necessary optimality conditions can be formulated using the Lagrangian functional
Lðw; q; kÞ ¼ Iðw; qÞ � k�cðw; qÞ; ð2Þ

where k is the Lagrange multiplier or the adjoint variable from the dual Hilbert space. If ẑ ¼ ðŵ; q̂Þ is a min-

imum, then there exists a k̂ such that
rzLðẑ; k̂Þ ¼ rzI ð̂zÞ � k̂
�
rzcðẑÞ ¼ 0: ð3Þ
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Hence, the necessary optimality conditions are
cðw; qÞ ¼ 0 ðState equationÞ; ð4Þ

rwLðw; q; kÞ ¼ 0 ðCostate equationÞ; ð4aÞ

rqLðw; q; kÞ ¼ 0 ðDesign equationÞ: ð4bÞ
Gradient methods, which are widely used in many practical applications, involve the solution of the state

and the costate equations at each update of the design variables. These methods only act in the design space

and assume that the state and costate or adjoint equations are solved exactly. Thus, they can be viewed as

an explicit Euler approximation to the following evolution differential algebraic equations
cðw; qÞ ¼ 0;

rwLðw; q; kÞ ¼ 0;

dq
dt

þrqLðw; q; kÞ ¼ 0:

ð5Þ
The disadvantage of these methods is their high computational cost due to the fact that state and costate

equations have to be solved quite accurately in each iteration step. Computational results based on these

methodologies have been presented in [7,9,16,17,32,33] on structured grids. An application of this method

on unstructured grids has been presented in [1]. This approach with a less accurate state and costate solu-

tion has been performed in Iollo et al. [31].

In [38], Ta�asan proposed another approach in which pseudo-time embedding is suggested for the state

and costate equations and the design equation is solved as an additional boundary condition, specially for

boundary control problems. Using this method, one finds a steady state solution of the following system of
equations
dw
dt

þ cðw; qÞ ¼ 0;

dk
dt

þrwLðw; q; kÞ ¼ 0;

rqLðw; q; kÞ ¼ 0:

ð6Þ
This is still a system of differential algebraic equations, where one has to provide some means to solve the

design equation alone. In previous work of Hazra and Schulz [11], the above formulation was superseded

by constructing a system consisting of only ODEs, which has been applied to an academic test problem

(boundary control problem in elliptic equations).

The proposed new method for solving the above problem (4) is simultaneous pseudo-time stepping. It is

well known that there is a strong correlation between iterative methods and pseudo-time stepping which has

been exploited for the construction of a time-stepping method in the spirit of reduced SQP-methods. That
is, to determine the solution of (4) we look for the steady state solutions of the following pseudo-time

embedded evolution equations
dw
dt

þ cðw; qÞ ¼ 0;

dk
dt

þrwLðw; q; kÞ ¼ 0;

dq
dt

þrqLðw; q; kÞ ¼ 0:

ð7Þ
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This formulation is advantageous since the steady-state flow is obtained by integrating the pseudo-un-

steady Euler (or Navier–Stokes) equations in this problem class. Therefore, one can use the same time-step-

ping scheme for the whole set of equations and preconditioners can be used to accelerate the convergence.

Certain preconditioners are equivalent to SQP methods (see following section), whose mathematical back-

ground is well studied. In the present paper, we have implemented this method for the shape design example
using Euler equations. The number of iterations required for the full optimization problem is less than four

times that required for the forward simulation (only) problem. This means a drastic reduction of the com-

putational cost compared to the usual gradient methods.

The paper is organized as follows. In the following Section we discuss the preconditioners which stem

from RSQP methods. Section 3 presents the preconditioned pseudo-unsteady optimization problem. In

Section 4, we present the state, costate and design equations whose discretization is discussed in Section

5. Numerical results are presented in Section 6. We draw our conclusions in Section 7.
2. Preconditioners

For the solution of problem (1), we recall a straight forward reduced SQP (RSQP) method. A detailed

discussion of this approach can be found in [34,35]. Industrial applications of the RSQP concepts are dis-

cussed in [2,26,36,37]. Here we present the outline of the method.

Reduced SQP methods are related to projected Lagrangian methods (cf. [10]) and are most advanta-

geous in cases, where the number of degrees of freedom (here the design parameters) is small compared
to the number of state variables. The variable steps in each iteration can be considered linear combinations

of steps towards optimality and steps towards feasibility of the constraints. The constraints are linearized

by a Taylor expansion up to first order terms, so that all steps towards optimality lie in the tangent space of

c of the current approximation (w,q):
cðw; qÞ þ Jðw; qÞDwþ oc
oq

ðw; qÞDq ¼ 0:
The optimization problem is projected to this tangent space and approximated by a quadratic problem

with the projected Hessian of the Lagrangian given by (2).

In this method, the computationally expensive operation of computing the exact projected Hessian is

typically avoided by using appropriate update formulas. It can be proven that under mild conditions the
reduced SQP method with the update formulas for the reduced Hessian shows super-linear local conver-

gence properties (s. [34]).

In the above method, it is necessary to invert the Jacobian J of the constraints. In many cases, that is not

a viable approach. The following considerations allow for replacing J with an approximate operator A

which is invertible with comparatively low cost.

To this end, one employs an inexact reduced SQP method as introduced in [35]. Although it is not in-

verted, the Jacobian is still used for the computation of the correct adjoint variables and the correct state

increments in the sense of defect correcting iterations. The algorithm of this method reads as follows:

Algorithm 1. The RSQP method with an approximate Jacobian.

(0) Set k:= 0, k0 = 0; start at some initial guess w0, q0.

(1) Compute the increment of the adjoint variables from the linear system with the adjoint operator A*
A*(wk,qk)Dkk:=$wI(wk,qk) �J*(wk,qk)kk;
compute the reduced gradient

ck :¼ rqIðwk; qkÞ � ðoc
oq ðwk; qkÞÞ

�ðkk þ DkkÞ;
determine some approximation Bk of the projected Hessian of the Lagrangian.



50 S.B. Hazra et al. / Journal of Computational Physics 204 (2005) 46–64
(2) Solve BkDqk = �ck.
(3) Compute step on w from the linear system

Aðwk; qkÞDwk :¼ �oc
oqðwk; qkÞDqk � cðwk; qkÞ.

(4) Set wk + 1 := wk + Dwk, qk + 1 := qk + Dqk and kk + 1 = kk + Dkk.
(5) k := k + 1; go to (1) until convergence.

A step of this method can also be interpreted as an approximate Newton step for the necessary condi-

tions of finding the extremum of problem (1), since the updates of the variables are computed according to

the linear system3
0 0 A�

0 B oc
oq

� ��
A oc

oq 0

0
BB@

1
CCA

Dw

Dq

Dk

0
B@

1
CA ¼

�rwL

�rqL

�c

0
B@

1
CA: ð8Þ
This is the basic formulation of the inexact reduced SQP methods that we are using in the subsequent

sections.
3. Pseudo-timestepping for optimization problems

Corresponding to the presentation in Section 1, the necessary conditions (4) for optimization can be con-
sidered as an overall nonlinear equation
F ðw; k; qÞ ¼
rwLðw; k; qÞ
rqLðw; k; qÞ
cðw; k; qÞ

0
B@

1
CA ¼ 0;
to be solved. In this way, it would be possible to perform an optimization strategy in a consistent way with

the time stepping method that is often used for the solution of the design equation alone.

The pseudo-time embedded system (7) is usually a stiff system of ODEs. Therefore, explicit time-
stepping schemes may converge very slowly or might even diverge. In order to accelerate convergence,

this system needs some preconditioning. In this paper, we use the inverse of the matrix in Eq. (8) as a

preconditioner for the time-stepping process. The pseudo-time embedded system of ODEs that we con-

sider is
_w

_q
_k

0
B@

1
CA ¼

0 0 A�

0 B oc
oq

� ��
A oc

oq 0

2
664

3
775

�1

�rwL

�rqL

�c

0
B@

1
CA: ð9Þ
This seems natural since Eq. (8) can be considered as an explicit Euler discretization for the corre-

sponding time-stepping that we envision. Also, due to its block structure, it is computationally inexpen-

sive. The preconditioner employed is similar to the preconditioners for KKT-systems discussed in [4,3] in

the context of Krylov subspace methods and in [5] in the context of Lagrange–Newton–Krylov–Schur

methods.

Within the inexact reduced SQP-preconditioner, one has to look for an appropriate approximation of

the reduced Hessian, B. In particular, when dealing with partial differential equations constituting the state

equations, the reduced Hessian can often be expressed as a pseudo-differential operator. Pseudo-differential
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operators [14,20] are characterized by their, so-called, symbol in terms of Fourier analysis. This can be

exploited for preconditioning purposes as in [11].
4. Detailed equations of the aerodynamic shape optimization problem

In this section, we explain briefly the state, costate and design equations represented in Eqs. (4) for the

shape optimization problem.

4.1. State equations

Since we are interested in the steady flow, a proper approach for numerical modeling is to integrate the

unsteady Euler equations in time until a steady state is reached. These equations in Cartesian coordinates
(x,y) for two-dimensional flow can be written in integral form for the region X with boundaries oX
(=B [ C) (see Fig. (1)) as
o

ot

Z
X
w dXþ

Z
oX

F �~n ds ¼ 0; ð10Þ
where ~n denotes the unit outward normal to oX and
w :¼

q

qu

qv

qE

2
6664

3
7775; F :¼ f ; g½ �; f :¼

qu

qu2 þ p

quv

quH

2
6664

3
7775 and g :¼

qv

quv

qv2 þ p

qvH

2
6664

3
7775:
For a perfect gas the pressure and total enthalpy is given by
p ¼ ðc� 1Þq E � 1

2
ðu2 þ v2Þ

� �
; H ¼ E þ p

q
;

respectively. The boundary conditions used to solve these equations are the zero normal velocity on the

solid wall C, and the farfield boundary B is treated by considering the incoming and outgoing character-

istics based on the one dimensional Riemann invariants.
Farfield Boundary (B)

Internal Cut

Ω

Body (C)

x

y

ξ

η=

Fig. 1. Physical domain of the problem.
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The cost function that we choose in the present optimization problem is drag reduction (with the geo-

metric constraint of constant thickness of the airfoil). Hence, the cost function reads as
Iðw; qÞ :¼ CD ¼ 1

Cref

Z
C
Cp nx cos aþ ny sin a
� �

ds; ð11Þ
where the surface pressure coefficient is defined by
Cp :¼
2ðp � p1Þ
cM2

1p1
: ð12Þ
The other constraint on constant thickness is maintained as we replace the airfoil by its camberline

representation. The geometry is modeled by Hicks–Henne functions. The y-coordinates of the surface

are written in parametric form. These parameters are the design variables of the optimization problem.

4.2. Costate equations

The costate or adjoint Euler equations are given by (see, for example, [8])
o

ot

Z
X
kdXþ

Z
oX

�F �~nds ¼ 0; ð13Þ
where the vector k contains the components of the adjoint variable and �F is the matrix of adjoint flux den-

sity, defined as
k :¼

k1
k2
k3
k4

2
6664

3
7775; �F :¼ of

ow

� �T

k;
og
ow

� �T

k

" #
:

The boundary conditions for the adjoint Euler equations on the solid body are of Neumann-type and for

the above mentioned cost function they are given by
nxk2 þ nyk3 ¼ � 2

cM2
1p1Cref

ðnx cos aþ ny sin aÞ; on C: ð14Þ
The farfield boundary conditions are based upon incoming and outgoing characteristics and free-stream

conditions apply there as well. It is important to note that the adjoint Euler equations are linear in k and the

wall boundary conditions depend on the cost function.

4.3. Design equation

For the design Eq. (4b), we need an expression for the derivative of the Lagrangian with respect to the

geometry of the airfoil. All the computations are carried out in a generalized coordinate system. Therefore,
a transformation is used to transform the physical (x, y)-domain to the computational (n, g)-domain. In the

computational domain, the components of the gradient (oL)/(oq) can be determined by integrating the ad-

joint solutions multiplied by the metric sensitivities as follows
oLðqþ �~qÞ
oq

� �				
�¼0

¼ �
Z
C
pð�k2~q

y
n þ k3~q

x
nÞds�

Z
X

kTn ~qygf � ~qxgg
� �

þ kTg �~qynf þ ~qxng
� �� �

dX

þ 1

Cref

Z
C
Cp ð~q?Þx cos aþ ð~q?Þy sin a
� �

ds; ð15Þ
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where ~q is the variation in the geometry of the airfoil and ~qx; ~qy are its x- and y-components, ðð~q?Þx; ð~q?ÞyÞ
are the components of the unit normal to ~q.
5. Discretization

5.1. State equations

The governing equations are discretized following the method of lines. Space discretization of the com-

pressible Euler equations is carried out using a cell centered finite volume scheme. The physical domain is

subdivided into a large number of quadrilateral cells (Xi,j) as shown in Fig. 2. Since the conservation laws,

Eq. (10), are valid for any arbitrary control volume, they also hold locally for each cell (Xi,j). Hence,
d

dt

Z
Xi;j

wdXþ
Z
oXi;j

F �~nds ¼ 0; ð16Þ
where the boundary oXi,j consists of the four sides of the quadrilateral, and~n is the unit outward normal to
the surface. The flow quantities w are taken to be volume averaged at the center (i, j) of the cell Xi,j (see Fig.

2), that is,
wi;j :¼
1

V i;j

Z
Xi;j

wdX; ð17Þ
where Vi,j is the volume of the cell Xi,j. If the mesh is time independent and the second integral of (16) is

approximated using the mid-point rule, the discrete analog of Eq. (16) is written as
V i;j
d

dt
wi;j

� �
þ Qi;j ¼ 0; ð18Þ
where Qi,j represents the net flux out of a cell (i, j) and is given by
Qi;j :¼ F i;jþ1
2

~Si;jþ1
2
� F i;j�1

2

~Si;j�1
2
þ F iþ1

2
;j
~Siþ1

2
;j � F i�1

2
;j
~Si�1

2
;j; ð19Þ
Fig. 2. Quadrilateral cell (i, j) (left) and location of dependent variables (d) and flux values (·) (right).
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with~Si;j�1
2
being the normal to the side Si;j�1

2
and F i;j�1

2
is calculated using the average of w at the cell centers

(i, j) and (i, j�1). The details of the flux computation can be found in [21]. The semi-discrete equations are

augmented with 1st and 3rd order artificial dissipations Di,j, as described in [19],
V i;j
d

dt
wi;j

� �
þ Qi;j � Di;j ¼ 0: ð20Þ
These equations are then integrated in time using a 5-stage Runge–Kutta type scheme. This scheme takes

the following form for Eq. (20) at time level n:
wð0Þ
i;j ¼ wn

i;j

wð1Þ
i;j ¼ wð0Þ

i;j � a1DtP
ð0Þ
i;j

..

.

wð5Þ
i;j ¼ wð0Þ

i;j � a5DtP
ð4Þ
i;j

wðnþ1Þ
i;j ¼ wð5Þ

i;j ;

ð21Þ
where the residuals
P ðkÞ
i;j :¼ 1

V i;j
QðkÞ

i;j � DðkÞ
i;j

� �
; k ¼ 0; 1; 2; 3; 4
and the values of the constant coefficients are a1 = 1/4, a2 = 1/6, a3 = 3/8, a4 = 1/2, a5 = 1.

In this case the steady state is independent of the time step Dt and is amenable to a variety of techniques

for rapid convergence. For stability, a modified condition, as in [21],
Dti;j 6 jV i;j j �qi;j �~Siþ1
2
;j j þ j �qi;j �~Si;jþ1

2
j þai;j j~Siþ1

2
;j j þ j~Si;jþ1

2
j

n oh i�1

; ð22Þ
has been used to determine the time step for each cell. Here, j is the Courant number and �qi;j and ai,j rep-

resent the velocity vector and the velocity of sound, respectively, at (i, j). Thus, the stability limit on Dt for a
time accurate calculation is
Dt ¼ mini;jDti;j: ð23Þ

The solution is advanced in time using the local time step Dti,j as in Eq. (22), based on j, instead of Eq.

(23). This allows for faster signal propagation and thus faster convergence. The details of the grid gener-
ation and solution methodology can be found in [22,23].
5.2. Costate equations

Due to structural similarity of the state and costate equations, it is obvious that one can use the same

solver for both sets of equations. These equations are also discretized in space using a cell centered finite

volume scheme on the same computational grid as described for the Euler equations. The adjoint equations

in each cell (i, j) are written as
d

dt

Z
Xi;j

kdXþ
Z
oXi;j

�F �~nds: ð24Þ
Analogous to Eq. (19), the adjoint flux ~Qi;j is computed as
~Qi;j :¼ �F i;jþ1
2

~Si;jþ1
2
� �F i;j�1

2

~Si;j�1
2
þ �F iþ1

2
;j
~Siþ1

2
;j � �F i�1

2
;j
~Si�1

2
;j;
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where the averaged tensors of flux density is computed as
�F i;jþ1
2
:¼ of

ow

� �T

i;j

ki;jþ1 þ ki;j
2

;
og
ow

� �T

i;j

ki;jþ1 þ ki;j
2

" #
;

with ki,j being the volume averaged value of k as defined in Eq. (17). Averaging the cell face normals~S leads

to
~Qi;j ¼
X
l2fi;jg

m2fi;jgnflg

�sðlÞx

of
ow

� �T

i;j

þ �sðlÞy

og
ow

� �T

i;j

a

 !
km;lþ1 � km;l�1

2
;

where
�sðlÞx

�sðlÞy

 !
:¼

~Sm;lþ1
2
þ~Sm;l�1

2

2
;

and enables to evaluate the adjoint flux efficiently by introducing the transformation
T�1 ¼

1 �u �v 1
2
ðu2 þ v2Þ

0 1 0 �u

0 0 1 �v

0 0 0 1

0
BBB@

1
CCCA;
so that
~Q
ðlÞ
i;j ¼ T �sðlÞx

of
ow

� �T

i;j

þ �sðlÞy

og
ow

� �T

i;j

 !
T�1:
Introducing k̂
ðlÞ
i;j :¼ T km;lþ1�km;l�1

2
, one gets
~Qi;j ¼
X
l2fi;jg

T�1 ~Q
ðlÞ
i;j k̂

ðlÞ
i;j ;

~Q
ðlÞ
i;j ¼

u�sðlÞx þ v�sðlÞy 0 0 0

�sðlÞx u�sðlÞx þ v�sðlÞy 0 c
c�1

p
q�s

ðlÞ
x

�sðlÞy 0 u�sðlÞx þ v�sðlÞy
c

c�1

p
q�s

ðlÞ
y

0 ðc� 1Þ�sðlÞx ðc� 1Þ�sðlÞy u�sðlÞx þ v�sðlÞy

0
BBBBB@

1
CCCCCA:
These matrices ~Q
ðlÞ
i;j are easy to evaluate and one finally obtains the finite volume scheme
V i;j
dki;j
dt

� �
þ ~Qi;j � Di;j ¼ 0;
where Di,j is again the artificial dissipation as described in [19] for the adjoint field vector k. These equations
are integrated in time using the same Runge–Kutta scheme as described above. The details of the spatial

discretization and the adjoint flux computations are described in [7].

5.3. Surface parameterization

The airfoil is represented by its camberline so that the constant thickness is maintained during the opti-

mization (otherwise the drag reduction problem will result in a flat geometry). In the current study, the

geometry is modeled by Hicks–Henne functions [13]. In this representation the y-coordinates of the surface
are written in parametric form. These parameters are the design variables of the optimization problem.
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5.4. Gradient computation

As an efficient method of calculating the gradient (dI)m = 1, . . . ,n := $qI, by evaluating the integrals (15), we

use, as in [8], the so called �grid moving technique� based on Reuther�s approach (s.[18]). These integrals (15)

are dependent on the adjoint field vector k and the metric sensitivities generated by the perturbation of the
geometry (by the n design variables). The idea is to allow the geometry perturbation in the whole flow field

(the whole grid) while keeping the far field boundary fixed. For this, one introduces a distance function

Rðn; gÞ ¼ 1� g
gBðnÞ

, where gB(n) denotes the values of g at the far field corresponding to the points (n, 0)

at the wall (see Fig. 1). Then it holds that
Rðn; 0Þ ¼ 1 at the wall and Rðn; gBðnÞÞ ¼ 0; at the far field:
The grid for the perturbed (new) geometry is defined by
xnew � xold :¼ R � ðxnews � xoldsÞ;

ynew � yold :¼ R � ðynews
� yoldsÞ;
where the index s refers to the values at the surface and xnew, ynew correspond to xnews ; ynews
, respectively.

Thus, the perturbations are
dx ¼ Rdxs; dy ¼ Rdys;
where ~qx ¼ dxs; ~q
y ¼ dys in Eq. (15), and the metric sensitivities are
dxn ¼ R � ðdxsÞn þ Rndxs; dyn ¼ R � ðdysÞn þ Rndys;

dxg ¼ R � ðdxsÞg þ Rgdxs; dyg ¼ R � ðdysÞg þ Rgdys:
The second term of each of these equalities is very small (s.[8]) and, therefore, could be neglected from

the above expressions. The effect of this simplification has been studied and justified in [8]. In that case the

metric sensitivities can be expressed as
dxn � R � ðdxsÞn; dyn � R � ðdysÞn;

dxg � R � ðdxsÞg; dyg � R � ðdysÞg;
and one obtains the components of the gradient (for the cost function (11)) as integrals along the geometry
C

dI ¼ �
Z
C

ðdysÞg
Z
g

okT

on
ðRðgÞ � f Þdg

� �
dnþ

Z
C

ðdxsÞg
Z
g

okT

on
ðRðgÞ � gÞdg

� �
dn

þ
Z
C

ðdysÞn
Z
g

okT

og
ðRðgÞ � f Þdg

� �
dn�

Z
C

ðdxsÞn
Z
g

okT

og
ðRðgÞ � gÞdg

� �
dn

�
Z
C
p �k2ðdysÞn þ k3ðdxsÞn
� �

dnþ 1

Sref

Z
C
Cp ðdysÞn cos a� ðdxsÞn sin a
� �

dn:
The integrals in g have to be evaluated once. Then, for each design variable only the integration in n
along C remains to be evaluated.
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5.5. Grid-perturbation strategy

As the shape of the airfoil changes during the optimization process, the location of the grid nodes has to

be adjusted. This can be done by generating a new grid after each design iteration or by using a grid-per-

turbation strategy after each design iteration.
The strategy follows the idea in [27], but in the present study, a specific property of structured mesh is

used. A finite number of cells, namely j0, surrounding the airfoil are defined, and all nodes belonging to this

area are moved exactly as the nodes at the boundary. The remaining unchanged cells are smoothly moved

until the farfield. The modified grid is then given by, for each cell i,
yði; jÞðnewÞ ¼ yði; jÞðoldÞ þ DyðiÞ if j 6 j0

yði; jÞðnewÞ ¼ yði; jÞðoldÞ þ 0:5 � DyðiÞð1þ cosðpi � SjÞÞ if j > j0
where Dy(i) represents the deformation of the surface of airfoil at the cell i, i.e., Dy(i) = y(i,1)(new)�y(i,1)(old)
and Sj is given by Sj = (j � j0)/(jmax � j0), which represents the distance in index notation between the de-

formed cell (i, j) and the last non-deformed cell belonging to the same i indices, i.e., (i, j0) cell. Here, jmax

represents the total number of cells in j-direction.

The overall algorithm reads as follows:

Algorithm 2. The simultaneous pseudo-timestepping for the preconditioned system

(0) Set k := 0; start at some initial guess x0, k0, q0.
(1) Compute kk + 1 using (21) with Dt from Eq. (22).

(2) Determine some approximation Bk of the projected Hessian of the Lagrangian.
(3) March in time one step, using Dt from Eq. (23), the design equation.

qkþ1 ¼ qk � DtfB�1
k rqL� B�1

k ðoc
oq Þ

�ðA�Þ�1rwLg.
(4) Compute wk + 1 using (21) with Dt from Eq. (22).

(5) k:=k + 1; go to (1) until convergence.

Step (1) represents a Runge–Kutta-version of the first step (�(A*)�1$wL) of the reduced SQP-method

(8). The block matrices A and A* corresponding to the state and costate equations in the preconditioner

are just identity matrices in the current implementation.

The algorithm above is a �one-shot� method since we perform one time-step for each design update.

However, it is different than the �one-shot�methods used in [24,39] in which the design variables are updated

in a hierarchical manner.
6. Numerical results and discussion

The optimization method is applied to a test case of the RAE 2822 airfoil. The physical domain is dis-

cretized using an algebraically generated (193 · 33) C-grid. On this grid the preconditioned pseudo-station-

ary equations are solved. The camberline representation of the airfoil is parameterized by 21 Hicks–Henne

parameters. The complete optimization cycle is performed under the optimization platform SynapsPoint-
erPro [6]. We start the optimization iteration (i.e., w0 and k0) with the solution obtained after 500 time steps

of the state and costate equations. We use the FLOWer code of the German Aerospace Center (DLR) for

solving the forward and adjoint equations. These codes are very robust and tested in many applications

including flow computations for the company AIRBUS-Germany. Therefore, no modifications were made

to this code (which is a typical requirement with most of the industries).
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The design equation is integrated in time using an explicit Euler scheme. Therefore the time step used for

the three sets of equations are not the same. In the current implementation of FLOWer the time steps are

determined independently for each discretization cell according to the local stability.

One of the main issues of using this kind of preconditioned pseudo-timestepping is the approximation of

the reduced Hessian. A better approximation will lead to faster convergence of the optimization algorithm.
In the current study, we compare the use of two different approximations.

6.1. Case 1

The Hessian is approximated by
Bk ¼ bdij;
where b (�1) is a constant and dij is the Kronecker symbol representing the identity matrix. This kind of

approximation is used as initial value for (iterative) BFGS updates of the Hessian. As convergence criterion
of the optimization iteration we use the discrete 2-norm of the increments of the profile parameters

(iqk�qk�1i2) less than 0.0017.

In this case, convergence of the optimization is achieved after 3700 time-steps. The convergence history is

presented in Fig. 3. After convergence is achieved for optimization, we perform another 600 time iterations

for state and costate solvers to reduce the residual of these two variables further to get more accurate values

of the surface pressure, force coefficients and gradients (which are comparable to the values obtained by

other methods).

For the sake of comparison, we computed more exact drag values on the optimized geometry obtained in
every 100 iterations (initially in every 10 iterations). This drag is compared with the inexact drag from the

optimization cycle in Fig. 4. We observe that the final objectives coincide.

Fig. 5 presents the initial and final sensitivities of the parameters (upper left), airfoils (upper middle), and

camber lines (upper right). The surface pressure distributions of the initial and optimized airfoils (obtained

by the current method and that obtained by steepest descent methods) are compared in the same figure

(lower). Both optimized pressure distributions almost coincide.

6.2. Case 2

In this case, the reduced Hessian approximation is based on second order information, as in the case of

BFGS optimization methods. We define sk := (qk + 1�qk) and zk := ($Ik + 1 � $Ik), where k represents the
cycle
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Fig. 3. Convergence history of the optimization iterations.
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iteration number. Then the curvature in the direction sk is obtained from the product ðzTk skÞ. If the curvature
is positive, the reduced Hessian is approximated by
Bk ¼ �b
zTk sk
zTk zk

dij;
where �b is a constant. Otherwise, it is approximated by bdij, where b is a constant as before. Additionally,

we impose upper and lower limits on the factor so that
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bmin <
�b
zTk sk
zTk zk

< bmax:
This prevents the optimizer from taking steps that are too small or too large. The constants bmin and

bmax can be chosen, e.g., depending on the accuracy achieved in one time step by the forward and adjoint

solver. This gives the flexibility of using different codes (e.g., a multigrid forward and adjoint solver).

In this case, we started the optimization with the same initial conditions as Case 1. The iteration is

stopped when the optimized drag is less than 0.0025 (which is the optimized drag obtained in Case 1).

The optimization requires 1225 iterations to reach this criterion, which is less than one-third of that re-

quired in Case I. This reflects the fact that a better approximation of the reduced Hessian in the precondi-

tioner leads to faster convergence of the optimization problem. Fig. 6 presents the optimization
convergence history of this case. Also presented in Fig. 7 is the comparison of exact drag and the inexact

drag during the optimization. Here, also we see that the final values are same in both cases.

Fig. 8 presents the comparisons of initial and final gradients (upper left), airfoils (upper middle), and

camber lines (upper right). The optimized surface pressure distribution obtained using the current method

and that obtained with steepest descent method are also compared in the same Figure (lower).
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In the pseudo-time optimization iteration, the initial drag of 0.0081012 is reduced to 0.0025996 in the

optimization process which is a reduction of about 68%. The lift and pitching moment coefficient history

is presented in Fig. 10. Since there is no constraint on these two quantities, they are also reduced by about

10% and 20%, respectively.
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Fig. 9. Reduction of force coefficients during steepest descent optimization iteration.
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Fig. 11 represents the contour plots of the Mach and surface pressure at the initial condition and after

optimization. As we see, the initial shock, which causes the major drag in the transonic range, has disap-
peared completely after the optimization.
Fig. 11. Comparison of initial (left column) and final (right column) Mach (top) and pressure (bottom) contours.
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Both the optimized surface pressures almost coincide with that obtained by steepest descent method.

However, the steepest descent method required 23 forward runs (white squares in Fig. 9) and 6 adjoint runs

(black squares) together with a line search. Each forward and adjoint run requires approximately 1500 iter-

ations in time. That means that the steepest descent method needs an effort of about 29 forward runs

whereas the present method needs an effort of little more than 3 forward runs. Additionally, the simulta-
neous pseudo-time method needs a new grid, obtained by grid perturbation as discussed earlier, after each

optimization iteration. Additional time is required to write the output after every iteration and read the

same before each iteration, as the iterations start with solution values from the previous iteration. However,

the total time required for this overhead is negligible compared to one complete forward run. If we add all

these efforts together, the time taken is still less than 4 forward simulation runs. In terms of CPU time, the

complete optimization cycle needs about 40 minutes on an Intel(R) Xeon(TM) CPU 1700 MHz machine.

Steepest descent method with restart or a higher order method (e.g., nonlinear CG or SQP) could also be

applied which would result in an improvement over the steepest descent results as well. Comparison with
these strategies is beyond the scope of this paper. However, it is possible to obtain an impression of this

comparison if one imagines what optimization progress could be achieved in 2 optimization iterations (2

forward + 2 adjoint simulation runs) of any gradient based methods, since this takes the equivalent com-

putational effort as a whole optimization run of our one-shot approach.
7. Conclusions

A new method has been proposed for aerodynamic shape optimization which is based on simultaneous

pseudo-timestepping. The preconditioned pseudo-stationary state, costate and design equations are inte-

grated simultaneously in time until a steady state is reached. The preconditioner used in this study is moti-

vated by a continuous re-interpretation of reduced SQP methods. A better approximation of the reduced

Hessian in the preconditioner leads to faster convergence of the optimization problem. The overall cost of

computation is approximately 15% of that of a straight forward application of the steepest descent method.

The generalization of the proposed strategy to problems with state constraints (e.g., drag reduction with

constant lift) is done in the subsequent work. Applications in 3D is our future goal.
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